## **MVTX Status and Plan**

Ming Liu Los Alamos

### MAPS-based Vertex Detector (MVTX)



- "Adopt" ALICE ITS Upgrade Inner Barrel 3-layer MAPS detector
  - Mini. risk, Max. Physics
- Precision vertexing for b-jet/B-hadron tagging with high efficiency and high purity
- B-jet modification in QGP at low-medium pT to determine QGP properties, study massdependence on collisional vs radiative energy loss, flow etc.
- A separate DOE MIE to build the full detector, WBS 1.12, ~\$5M for construction;
- Early R&D by LANL LDRD, \$5M, FY17-19, readout and mechanical integration;

## Outline

- MVTX Pre-proposal
- BNL Director's review
- R&D status and plan
  - Stave
  - Readout
  - PS and Controls
  - MOSAIC test bench
- Mechanical integration
  - MVTX/INTT/TPC

## **MVTX Pre-proposal Submitted!**

- Pre-proposal submitted to DOE, 2/2017
  - Follow-up discussions with DOE and BNL managers
  - Weekly proj. leaders meeting BNL/LANL/LBNL/MIT
- Plan to update proposal to DOE, late 2017
  - Expanded science "CD0" + Cost & Schedule "CD1"
  - Funding in FY18, stave production @CERN in Aug.
     2018+, ~6 months;
    - Other options being explored for stave production @CERN/CCNU for delayed funding
- BNL Director's Review: July 10-11, 2017
  - Expand science case, "CD0"
  - Update Cost & Schedule, "CD1"
  - A dry run next Monday 6/19



# A growing collaboration!

### new sPHENIX/MVTX members:

- Czech groups
- CCNU lab
- USTC
- Peking Univ.

### A great opportunity for:

- Physics
- Detector R&D
- Hardware
- Offline software

#### 7 Organization and Collaboration

Here we discuss the current collaborating institutions and their focus areas. Based on their technical expertise and available resources, LANL, LBNL and MIT/Bates groups are leading the three major technical tasks of the project: 1) readout electronics integration; 2)carbon mechanical support frames production and 3) cooling and mechanical system integration, respectively.

Los Alamos National Lab (LANL): Readout electronics and mechanics integration.

Lawrence Berkeley National Lab (LBNL): Carbon structure, production, LV and HV power system, full detector assembly and test.

Brookhaven National Lab (BNL): System integration and services, safety and monitoring.

Massachusetts Institute of Technology (MIT/Bates): Mechanical system integration and cooling.

Massachusetts Institute of Technology (MIT): Stave assembly and testing at CERN.

University of Texas at Austin (UT Austin): MVTX readout electronics integration and testing.

University of Colorado: b-jet simulations and future hardware.

Iowa State University (ISU): Detector assembly and testing, simulations.

Florida State University (FSU): Offline and simulations.

University of New Mexico (UNM): LV cabling & connectors.

New Mexico State University (NMSU): Tracking algorithm and physics simulations.

Georgia State University (GSU): Online software and trigger development.

University of California at Los Angeles (UCLA): Simulation and readout testing.

University of California at Riverside (UCR): Detector assembly and testing, simulations.

Yonsei University (Korea): MAPS chips QA and readout, simulations

RIKEN/RBRC (Japan): Mechanical integration, cooling, cabling, simulation, patter recognition.

Purdue: Detector assembly and testing, analysis. Silicon lab available.

Central China Normal University (CCNU/China): MAPS chip and stave test at CERN and/or CCNU.

Univ. of Science and Technology of China (USTC/China): MAPS chip and stave test, simulations.

## Scope of the MVTX Project

- MAPS staves & Electronics
  - MAPS Detectors
    - "MoU" to build 68 ITS MAPS staves
    - No modification
  - Readout Electronics
    - Frontend: ALICE/ITS, RU
    - Backend: ATLAS FELIX
    - Modify/reprogram RU & FELIX for sPHENIX
    - R&D by LANL LDRD
  - Production
    - Extend ALICE/ITS MAPS stave production
    - sPHENIX personnel help assembly and testing staves at CERN
    - Reproduce additional ALICE RU & FELIX for sPHENIX
    - Final assembly and test in US, LBNL/BNL
  - Ancillary systems, copy ALICE
    - LV/HV, cables, crates, racks etc.
    - Slow control, safety and monitoring

- Mechanics & Cooling
  - No/(some) changes to ALICE/ITS inner tracker mechanical structures
    - End Wheels
    - Cylindrical structure shells
    - Detector half barrels
    - Detector and Service half barrels
  - Mechanical Integration
    - Conceptual design by LANL LDRD
    - Prototype by sPHENIX R&D
    - Design integration frames
    - · Carbon frames etc.
    - Installation tooling etc.
  - Copy ALICE cooling plant design
    - Minor modification to fit sPHENIX
    - Smaller heat load than ALICE ITS
  - Metrology and Survey

WBS 1.12: a new MIE fund the full MAPS Vertex Detector, ~\$5M

# **Project Tasks and Timeline**



"MoU" w/ ALICE/ITS: 11/2016

- Produce MAPS chips and Stave Space frames for sPHENIX as part of ALICE production!
- Full staves and RU & CRU production cost & schedule → MVTX MIE

## Prepare for the BNL Director's Review

- Science
  - HF-Jet Topical Group Preliminary for a dry run next week
    - B hadron physics
    - B-jet physics
    - Detector performance plots
  - Near final "money plots" for July review
- Cost and Schedule
  - Updated WBS structure and org chart
  - Work in progress, cost & schedule, 6/5/2017
- MVTX stave production options
  - Ming's visit to CCNU in May
  - Maria's visit to CERN this week

## Uniqueness of Heavy Quarks in QCD



## HF-topical group

- HF in sPHENIX: in particular B-meson and b-jets, provide differentiating sensitivity to collision VS radiative energy loss, access to HQ transport parameter of QGP, total cross section. Bring results to precision era.
  - O<p<sub>T</sub><15 GeV/c B-meson: access down to zero pT, max sensitivity to HQ mass effect</li>
  - p<sub>T</sub>>15 GeV/c b-Jet: less dependence on FF complication, probing parton kinematics and higher p<sub>T</sub>-scale
- High priority task are set to develop and simulate performance for coming MVTX reviews and proposals, expanding the program in HF-jet and HF-meson programs









#### Communication:

- Discussion email list: https://lists.bnl.gov/mailman/listinfo/sphenix-hf-jets-l
- Wiki page under construction: <a href="https://wiki.bnl.gov/sPHENIX/index.php/Heavy-Flavor-Topical Group">https://wiki.bnl.gov/sPHENIX/index.php/Heavy-Flavor-Topical Group</a>

#### Meetings/Events

- Use weekly simulation meetings for updates, <a href="https://indico.bnl.gov/categoryDisplay.py?categId=88">https://indico.bnl.gov/categoryDisplay.py?categId=88</a>
- Monthly TG meetings: <a href="https://indico.bnl.gov/categoryDisplay.py?categId=151">https://indico.bnl.gov/categoryDisplay.py?categId=151</a>
- Goal oriented irregular events:

MVTX brainstorming meeting, Mar 8 / MAPS+HF-jet joint workfests, e.g. Jan 5-7 2017 @ Santa Fe / Precollaboration meeting work-fest on May 16-17, 2016 / Initial TG meeting on Apr 22, 2016

### Updated Cost and Schedule WBS: 6/5/2017

Dave Lee et al





### MVTX R&D Status and Plan

#### Readout R&D

- 5 single-chip MAPS tested at LANL
- Workfest @UT-Austin, 4/19-20
- RUv1 available in July, will be used for LDRD telescope
- BNL/ATLAS FELIX being evaluated as the default backend
  - Computer arrived, fibers/cables ordered
  - Obtain one FELIX in a few weeks
  - "CRU" being prototyped with Altera evaluation boards, able to communicate with the RUv0 board @ UT-Austin;
- LANL MOSAIC test bench in operation!

### Tracker integration task force

- MVTX + INTT + TPC mechanical system integration
- Identified the major tasks

### Stave production @CERN

- ALICE Stave Production Readiness Review 4/27, prod. Starts in June/July
- LANL people do assembly and testing at CERN, May Sept. 2017
- MVTX plan

# MVTX Readout Workfest @UT-Austin, 4/19-20

https://indico.bnl.gov/conferenceDisplay.py?confld=3047

- Very productive discussions:
  - sPHENIX readout Martin
  - TPC readout Jin and Takao
  - ALICE ITS readout system Jo
  - LV/HV and Slow controls Giacomo
  - MVTX readout options Mark
- Lab demo of RUv0 and "CRU" R&D
  - -RUv0
  - "CRU" prototype with an Altera eval. board
- A brief summary
  - Defined a possible MVTX readout path
    - RDO Unit, some modification
    - · CRU/FELIX (TPC), significant R&D needed
  - Joint R&D on RU and CRU, maybe also FELIX integration
  - UT-Austin's interest in RU and CRU production & test!





## MVTX Readout and Control System Status



## ALICE/ITS Readout R&D

### 5 RUv1 available for LANL R&D ~July 2017

### RUv1 – Overview (board general layout an connectors fixed)

- All connectors fixed (connectors toward Power Units mounted on mezzanine, upgradable).
- PCB size  $233 \times 240 \text{ mm}^2$ , VME slot compliant, VME J1 for power/ground. (1 1.5 kg cold plate included).
- ITS crates will accommodate 340mm deep Power Boards, a passive extender is envisaged.
- P1/J1 positioning makes the RUv1 vertical orientation FIXED (data connectors on top)
- Critical: data cable connector length (Antoine design) vs balcony depth (70mm now)
- Critical: check power board volume compatibility (few mm available on top side of RUv1 in case)



### Electronics R&D - Cont.

#### **FELIX and MVTX Power Distribution Boards**

#### FELIX: visited BNL Labs and had FELIX system demo

- V1.5 boards, all functionalities available- data, slow control and Timing/Trigger/Busy, w/ GBT
- Multi-channel GBT links and PCIe interface code developed, with examples of user modules
- V2.0, available ~end of 2017, sPHENIX application
- A 1.5v FELIX board produced and tested, ready for shipment to LANL; Optical cables etc. to be ordered soon for LANL test bench

#### Power distribution boards and PS

- LBNL PS distribution board available for R&D from CERN/ LBNL ~ August. Order placed, 4wks + testing
- R&D power supply and control system ordered (CAEN), available ~August





# R&D @LANL on MAPS Single Chip Readout

- MOSAIC test bench in operation
  - Single MAPS chip with high-speed readout
  - Threshold scan
  - Noise scan
  - External trigger
  - Test data readout performance
    - 1.2Gb/sec
    - 0.6Gb/sec
    - 0.4Gb/sec
- Test firefly cable performance
  - 5m (ALICE default)
  - 7m, 10m
  - Short extension cables, +20~30cm



# Test under internal trigger (40MHz)

From Xuan

- Readout speed 1.2 Gb/s and 50 injections.
- Scan the noise per pixel and the average value is 7.47±1.80 (e).



# Test under internal trigger (40MHz)

- Readout speed 600 Mb/s and 50 injections.
- Scan the noise per pixel and the average value is 7.53±1.76 (e).



### **External Trigger and Source**

Single chip readout

 Use a pulse generator as the external trigger

- Use the Strontium-90 to produce beta rays.
  - Vary the distance between the source and the silicon chip



## A Single-chip MAPS Telescope

- Check the readout occupancy and efficiency under different internal trigger clock (10-40MHz), readout speed (400-1200Mb/s) and threshold (set up by the analog signal or the configuration file?).
- Set cosmic ray triggers with scintillator bars or pads to read out single MVTX chip with the external coincidence cosmic ray trigger.
- Design of single chip based telescope in progress



## Stave Production & Test @ CERN

From Sanghoon

- Under preparation for massive stave production
  - Overall ALPIDE chip test and HIC/stave production procedure is well established Successful ITS Stave production readiness review on Apr/27
  - Optimization of fine configuration is underway
  - Expect to finalize the entire procedure with a new set of ALPIDE chips w/o PIQ which will be ready soon
  - ALPIDE chips with PIQ will be available from mid July

### Chip test and HIC assembly machine



## Stave Production & Test @ CERN

- Prototype HICs and staves will be available for LANL R&D soon
  - Multichip readout
  - Mechanical cooling

Sanghoon, Cesar et. al. working @CERN May – Sept. 2016
Czech group – postdocs + Tech @CERN

### HIC/Stave test setup @CERN



### **MVTX Stave Production Plans**

- Plan-A
  - CERN production:
    - Assembly and test
  - Time: starting 08/2018, 6-9 months

**DOE Budget: FY18** 

Impact on sPHENIX start date?

**CCNU** option  $\rightarrow$  plan A?

- Plan-B
  - HICs production @CCNU, Sep. 2018, 2-3 months
  - Stave space frame production @CERN ITS/IB, by 2017
  - Stave assembly: US/LBNL? Or China/CCNU, 4-6 months

### Latest News from CERN

- 1) FPC and chip gluing has ben tested and settled. Production will use 90 microns droplet glue which introduced minimum material budget.
- 2) Production starts early July. One stave per day. Expect first ALICE/ITS ready January 2018, second detector ready in June 2018.
- 3) Confirmed MAPS chips and staves frames being produced for MVTX as part of the ALICE contingency
- 4) Despite the rumors propagated recently, the stave assembly room, machinery and personal will be available after ALICE production. They are also going to make a replica of the entire ITS for NIKA experiment in Dubna during 2019-2020. ATLAS consults on the possibility to use the MAPS technology for their inner tracker upgrade in the future. If they decide for it they will use a completely different facility.
- 5) LANL is going to send post-docs for 2-3 months stages at CRN to work on the stave characterization.
- 6) FZU Institution from Prague are also sending post-docs and staff to CERN to work on stave characterization.
- 7) We are discussing the possibility for Prague to send a skilled person to work on the construction of the staves. This task requires a skilled person, long training, and to stay at CERN at least six months.
- 8) Will have at least one stave sent to LANL for R&D in June. We expect to have four (at least partially functioning) staves by the end of September.

## MVTX/INTT Integration Issues



### FPC Extension for Connection to Electrical Services

ALICE ITS Upgrade



Such extensions are equipped with passive components ( $10x\ 220\ \mu F$  capacitors) to stabilize the analogue and digital power supplies, respectively



From Walt



This solution allows to implement a "flexible" connection to external service cables with minimized space occupancy

### Possible Low Profile Connections

From Sanghoon/Walt



## Summary and Outlook

- Exciting physics and great opportunity!
- A lot happened
  - Physics and detector simulations & optimization
  - Good progress with MAPS readout R&D
  - Mechanical integration
  - Some challenges due to delays in ALICE ITS R&
- A lot to do
  - Staves, RU, FELIX/CRU integration
  - PS and controls
  - BNL, DOE Reviews
  - Build and operate the detector
  - and more fun ...
  - Join us!



# Winter Collaboration Meeting @Santa Fe A 2.5-day event

- Things to consider:
  - Before or after final exams, or winter breaks
  - Avoid other major meetings/reviews
  - Avoid busy travel seasons
  - Good time for sPHENIX planning etc.
- Possible dates (Fri-Sun?)
  - Nov. 17-19
  - Dec. 1-3
  - Dec. 8-10
  - Jan. 5 -7, 2018

# backup

## **MVTX: WBS 1.12**



| $\overline{	ext{WBS}}$ | sPHENIX MIE Project Elements  |
|------------------------|-------------------------------|
| 1.1                    | Project Management            |
| 1.2                    | Time Projection Chamber       |
| 1.3                    | Electromagnetic Calorimeter   |
| 1.4                    | Hadron Calorimeter            |
| 1.5                    | Calorimeter Electronics       |
| 1.6                    | DAQ-Trigger                   |
| 1.7                    | Minimum Bias Trigger Detector |

| WBS  | Infrastructure & Facility Upgrade |
|------|-----------------------------------|
| 1.8  | SC-Magnet                         |
| 1.9  | Infrastructure                    |
| 1.10 | Installation-Integration          |

| WBS  | Parallel Activities                |
|------|------------------------------------|
| 1.11 | Intermediate Silicon Strip Tracker |
| 1.12 | Monolithic Active Pixel Sensors    |

A separate MIE as an upgrade project

## FPC and FireFly Cable Extension



## MVTX/INTT Integration

### **Extend MVTX Service Cables?**



### FPC Extension for Connection to Electrical Services





### Antonello Di Mauro, Stave PRR 4/27/2017

The connection to the service cables is achieved by a double FPC extension which is soldered to the HIC





The connection to the service cables is achieved by a double FPC extension which is soldered to the HIC









2 Cu layer flex, PI : 50  $\mu m$ , Cu : 35  $\mu m$ , Solder mask : 20  $\mu m$ 

The 2 flexes are glued together, in the middle to have a 4 layers flex.



The PWR\_extension is connected to the FPC by iron soldering.





Aluminum Flex

Copper Flex



## HICs Assembly Lab @CCNU

space ~ 70m<sup>2</sup> (1K clean room); 20m<sup>2</sup> (10K clean room, 2.9m head room)

- Chip and FPC gluing
- Gluing FPC/MAPS
- Chip mounting
- Wire Bonding
- Electrical circuit testing
- Storage

Machine shop: (Sun, Daming, Tech.)

- CNC etc.
- Simple mechanical structures

Not Doing at present:

- Stave assembly
- No carbon structures



### CCNU Plan - Cont.

- Experts and Designers of ALICE MAPS/ALPIDE on-chip electronics
  - Analogy circuit Dr. Chaosong Gao
  - Digital circuit Dr. Ping Yang
  - They will help us!
- PLAC Pixel Lab At CCNU
  - Also interested in mechanical system integration
  - Plan to hire a full time engineer to work on sPHENIX integration effort
    - Visit LANL 6-12 months, work on preliminary conceptual design for the MVTX/INTT/TPC
- Physics simulation and analysis
  - Many students











### From L. Musa, 4/27/2017

- Pixel Sensor Chip EDR (Oct' 15)
- 2 Stave EDR (May' 16)
- 3 Detector Barrel Mechanics EDR (Jul '16)
- 4 Cooling EDR (Jul '16)
- ⑤ Pixel Sensor Chip PRR (Nov '16)
- 6 Detector Barrel Mechanics PRR (Dec '16)
- Service Barrel Mechanics EDR (Dec '16): done
- (8) Cooling PRR (Dec '16): done
- Readout Electronics EDR (Jan '17): done
- 10 Stave PRR (Apr '17)
- Service Barrel Mechanics PRR (May '17)
- 12 Readout Electronics PRR (Dec '17)

## Stave Production Readiness Review: 4/27/2017

- Stave production starts ~May/June;
- 1<sup>st</sup> set of IB by Jan 2018;
- 2<sup>nd</sup> set of IB by July 2018
- LANL people + others/MVTX work on stave production from May 2017 at CERN, prototype available soon at LANL
- Fully working staves for R&D available
   ~Jan 2018;
- Near final readout RU/CRU: ~12/2017

# External trigger setting with a pulse generator

- Use Chip 4 for test.
- Use a pulse generator as the external trigger source. Now use 2MHz square pulse.
- Readout the FE trigger output of the MOSAIC board and check in the oscilloscope.
- Need to tune the external trigger to be in the phase locker.



# Test under internal trigger (40MHz)

From Xuan

- Readout speed 600 Mb/s and 50 injections.
- Scan the threshold per pixel and the average value is 394.33±41.79 (e).

